Activation Function PReLu

PReLu

The activation function PReLu is:

\[f(y_i)=\begin{cases} y_i,&\text{if }y_i>0 \\ a_iy_i,&\text{if }y_i\leq0\\ \end{cases}\]


\[\frac{\partial f}{\partial a_i}=\begin{cases} 0,&\text{if }y_i>0 \\ y_i,&\text{if }y_i\leq0\\ \end{cases}\] The \(a_i\) update method: \[\triangle a_i:=\mu \triangle a_i+\epsilon\frac{\partial\varepsilon}{\partial a_i} \] where \(\mu\) is the momentum, \(\epsilon\) is the learning rate and \({\varepsilon}\) is target function.

And: \[\frac{\partial\varepsilon}{\partial a_i}=\sum_{y_i}{\frac{\partial\varepsilon}{\partial f(y_i) }\frac{\partial f(y_i) }{\partial a_i}} \]

Conclusion

Leaky ReLu 的\(a_i\)值是固定的,而Parametric ReLu的\(a_i\)值会根据input data作修正。

Reference

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification